Reg. No.:....

Name :

Fourth Semester B.Tech. Degree Examination, February 2015 (2008 Scheme)

08.402 : DIGITAL ELECTRONICS AND LOGIC DESIGN (E) (Special Supplementary)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all question. Each question carries 4 marks.

- Compare TTL and CMOS logic families.
- 2. Draw the truth table and circuit of a full subtractor.
- 3. Define:
 - 1) propagation delay
 - 2) noise margin
- 4. Convert (539.78)₁₀ to (a) BCD code (b) XS 3 code.
 - 5. Explain how race-around condition is eliminated in J-K flipflop.
 - 6. What are alphanumeric codes? Explain any one alphanumeric code.
- 7. Implement the POS function expressed by π 1, 2, 5 by a suitable multiplexer.
- 8. Distinguish between PLA and PAL devices.
 - 9. Mention the applications of 555 timer.
- 10. Explain the significance and application of gray code.

PART-B

Answer any one question from each Module. Each question carries 20 marks.

Module - I

- 11. a) Convert the following.
 - i) (1011.101)₂ to decimal
 - ii) (AEOF)₁₆ to octal
 - iii) (5235)₁₀ to hexadecimal
 - iv) Octal 67.25 to binary.

b) What are the different methods of representing negative numbers? Give examples.

10

10

10

12. a) Prove the following:

- a) $AC + B\overline{C} + AB = AC + B\overline{C}$
- b) $\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} = \overline{AB} + \overline{BC}$
- b) Find the minimal SOP expression for the function

$$F(A, B, C, D) = \sum_{i=1}^{n} m(0, 1, 2, 7, 8, 9, 10, 13) + \sum_{i=1}^{n} d(5, 15).$$
 10

Module - II

- a) Design a BCD to 7-segment decoder (Design need to be shown for any four output segments).
 - b) Draw and explain the working of 2-input CMOS NAND and NOR gates. 10
- 14. a) Convert the following flipflops:
 - i) D to JK
 - ii) JK to T
 - b) Design a parity generator/checker and explain the working of the same.

Module - III

- 15. a) Design a mod-12 counter and give its truth table.
 - b) Explain the operation of a stable multivibrator using 555 timer IC.
- 16. a) Briefly explain the operation of a 3-bit universal shift register.
 - b) Draw the circuit of a D flip-flop using NAND gates and explain its operation.

